Cybro Edge Toolkit

User Manual v17

cybraTech

© 2009-2025 Cybrotech Ltd.

Overview

CybroEdgeToolkit is a set of applications for network connectivity, data collection and visualization.
Applications are written in Python and run on various operating systems and hardware platforms.

[] open source 6
[cybrotecn web browser > Grafana :“
. in progress l observability TR

© secure
O unsecure — E InfluxDB

20°
==l
Node-RED @ data
data bridge el

dashboard
MQTT

device

45%
dashboard

£ NS
Home Assistant L 3
3306 MySQL

event bus

MQTT
device

MQTT
service

S

config.ini_—=="" config.ini
data-togger.xml publisher+subscriber

event . 000y = e

o7

program-+firmware
cybro

1 socket

cybro cybro

Each connection moves data in both directions. The arrow indicates which side initiates the
connection. The blue dashed line indicates propagation of controller-based events.

Applications can be executed on a single computer or distributed across multiple devices. Small
footprint allows them to run on almost any hardware platform, including single-board computers.

All applications are located in a single directory:

/app/scgi_server/ read and write controller variables using HTTP requests
/mgtt_client/ publish and subscribe controller variables to MQTT
/data_logger/ periodically read from controller and store in database
/web_scada/ web-based interface for online monitoring and control
/1lib/ common library functions
/tls/ security certificate
config.ini shared configuration file
data_logger.xml logger configuration file
requirements.txt list of python dependencies

Applications are configured by editing the config.ini file. When applications run on the same computer,
they use the same file. If the file is modified while the application is running, the application will
automatically reload the file and restart.

The default config.ini is prepared to run on a single computer, without encryption.

Installation

Applications run on Python v3.8 or later. If Python is not installed, download it from python.org. Make
sure to check the option "Add Python to PATH". Download the package from cybrotech.com and unzip
into the recommended directory:

Linux: lusr/bin/cybrotech/cybro_edge_toolkit/
Windows: c:\Program Files (x86)\Cybrotech\CybroEdgeToolkit\

Change directory to /app and install dependencies:
pip install -r requirements.txt
Edit config.ini to match your configuration, then start the applications you need:

/scgi_server/start.py
/mgtt_client/start.py

Additional steps are required for the installation of web scada and data logger.

Non-stop operation

To ensure that server is running 24/7, configure the system to execute start.py once every minute. If
the server hangs up for any reason, the script will terminate the process and restart the server.

In Linux, this can be done using the cronjob service:
crontab * * * * * /Jusr/bin/cybrotech/cybro_edge toolkit/app/scgi_server/start.py
The same can be done for each application.

A more advanced solution is to use systemd, service manager for Linux, which provides automatic
restart, logging and resource management.

In Windows, similar function can be performed with the Task Scheduler (taskschd.msc).

Virtual environment

To avoid pollution of global scope, it's recommended to install dependencies inside the virtual
environment. For more info, open docs.python.org/3/library/venv.html. Commands must be executed
in the /app directory.

Create virtual environment:
python -m venv venv

Activate the virtual environment:
./venv/Scripts/activate

Once virtual environment is activated, you can install dependencies and run the applications. In case
you don't use them any more, deactivate the virtual environment:

./venv/Scripts/deactivate

http://www.python.org/
http://www.cybrotech.com/
http://docs.python.org/3/library/venv.html

SCGI server

CybroScgiServer is a communication interface for reading and writing controller variables by name.

« server listens for HTTP requests on a specified port (4000)

* request can involve multiple reads and writes on multiple controllers
* server accepts connections from multiple clients at the same time

* server receives event driven sockets and push data to clients

* client/server connection can be encrypted for internet use

« configured by editing config.ini file

* runs as a background service

The controller can be connected in the following ways:

* local network, where controller's ip address is detected automatically
« over the internet, where controller must send push messages to the server
 over CAN bus, using Raspberry Pi and PiCAN2 interface (Cybro-Pi4)

The connection between controller and server is not encrypted.

Reading and writing
To read and write data from the controller, open one of these URLs in your browser:

http://localhost:4000/?c20000.rtc_sec
http://localhost:4000/°?c20000.cybro_power_ supply&c20000.cybro_temperature
http://localhost:4000/?c20000.cybro_qgqx00=1

Replace 20000 with the serial number of your controller. The result is returned in XML format:

<data>
<var>
<name>c20000.rtc_sec</name>
<value>59</value>
<description>Seconds of internal real-time clock (@..59).</description>
</var>
</data>

Float variables always return value with a decimal point. If an error occurs during operation, the
response will contain an error code:

<data>
<var>
<name>c20000.rtc_xxx</name>
<value>?</value>
<description/>
<error_code>2</error_code>
</var>
</data>

The error_code indicates which error occured:

: communication timeout
: variable not found

: controller not found

: no plc program

: no alc file

AR WN =

Event-driven data

Polling sends messages in regular intervals, regardless of whether the data has changed. In contrast,
event-driven communication works by having the controller detect a change and send it to the server.
This minimizes delays and reduces network traffic.

The event uses the already established connection between client and server, sending data in the
opposite direction.

To send an event from Cybro controller to MQTT system, follow these steps:

» create on-request socket with variables that contain event data

« write plc program that detects the event and sends the socket

« config.ini, section ETH, add socket description to enable receiving
« config.ini, section PUBLISHER, create a topic

A program that performs the task might look like this:

if fp(cybro_ixee) then
event_data:=1; // pushbutton pressed
socket_req:=1; // send socket

elsif fn(cybro_ix@@) then
event_data:=2; // pushbutton released
socket_req:=1; // send socket

end_if;

The configuration file might look like this:

[ETH]
socket = 1; socket_req; event_data;

[PUBLISHER]
var = c20000.event_data, myhome/events, ©

For more details, check MQTT section.

Encrypted connection

Encryption is process of encoding that ensures privacy (not readable to anyone else), identity (both
parties confirmed), authenticity (message not modified) and reliability (message not damaged).

To create an encrypted connection, follow these steps:

* open config.ini, set tls_enabled=true
- create a token of 64 random characters
* generate a new security certificate

Token provides an additional layer of security, allowing separate authentication for different projects,
and easy revocation of access rights.

[SCGI]
tls_enabled = false
token = PWFChKsSB4DJoe4WCO9hBaOKRDg47hMYpFqfFyHda35TdRo3yOTGAWPmWjuOry47

A security certificate contains a public key that is used to encrypt and decrypt messages between the
client and the server. The default certificate, located in the /app/tls directory, is provided as example
only and offers no security. The simplest solution is to generate a self-signed certificate.

To do this, install the last version of SSL binaries from wiki.openssl.org.
Generate a private key (.key):
openssl genrsa -out private.key 4096
Generate a certificate signing request (.csr):
openssl req -new -sha256 -config ssl.cnf -key private.key -out private.csr
Generate the certificate (.crt):

openssl x509 -req -sha256 -days 3600 -in private.csr -signkey private.key -out
private.crt -extensions req_ext -extfile ssl.cnf

Copy all generated files into /app/tls and restart server.

To check that certificate is properly installed, add generated private.crt to your browser trusted root
certification authorities (Settings/Security), and try secure connection:

https://localhost:4000/?c20000.rtc_sec
Alternatively, you can purchase a certificate from an authorized authority, like letsencrypt.org.

Encryption adds a certain amount of processing to each request; therefore, it may increase server load
to some extent.

Controller alias

To simplify system maintenance, each controller can be assigned an alias. The name can include
alphanumeric characters and underscore, not case sensitive. Alias is specified in the config.ini file:

[ALIAS]
C20000 = alpha

The controller is accessed the same way, except that the alias is used instead of the serial number.
http://localhost:4000/?alpha.rtc_sec

Once the alias is set, controller can no longer be accessed by the serial number.

Data cache

The cache is used to improve server performance when handling a large number of requests.

read from cache I read from cache & update I read from controller

I 1 I
0 request_period_s valid_period_s

The valid_period_s is duration, in seconds, for which the cached value remains valid. When the period
is exceeded, a read from the controller is performed, delaying answer until the response is received.

The request_period_s is the amount of time in which the cached value is still returned, while a read
operation is simultaneously initiated to refresh the cache. Must be shorter than the valid period.

The cleanup_period_s is the interval, in seconds, after which the expired items are removed from the
cache. Set to a few minutes or more, to avoid unnecessary consumption of resources.

http://wiki.openssl.org/index.php/binaries
https://letsencrypt.org/

System variables

System variables indicate status of the server and associated controllers. They are read in the same

way as controller variables.

http://localhost:4000/?sys.scgi_status

Server-related variables

sys.scgi_status

sys.server_version
sys.server_uptime
sys.scgi_request_count
sys.push_port_status

sys.push_count
sys.push_ack_errors
sys.nad_list
sys.push_list
sys.push_list_count
sys.cache_valid
sys.cache_request
sys.udp_rx_count
sys.udp_tx_count

Controller-related variables

c20000.sys.plc_status

¢20000.sys.ip_port
c20000.sys.timestamp
c20000.sys.response_time
c20000.sys.bytes_transferred
c20000.sys.com_error_count
c20000.sys.variables
€20000.sys.alc_file

Replace 20000 with serial number of your controller. The response is formatted as XML or plain text.

server status:

* "active", server is up and running

* no response, the server is down

software version in format "major.minor.release”
server uptime in format "dd days, hh:mm:ss"

total number of requests since the server is started

« "active", push server is up and running

* "inactive", push disabled in configuration file

« "error", port already used by another application

total number of push messages received from controllers
total number of acknowledge errors

active controllers, including static, push and autodetect
formated list of active controllers, including their status
total number of controllers in the push list

configured cache validity time [s]

configured cache request time [s]

total number of A-bus messages received

total number of A-bus messages transmitted

status of the controller at the last data reading:
"ok", controller is running

* "pgm missing", controller has no plc program

* "alc missing", controller has no alc file

« "offline", controller does not respond

« "?", status of the controller is unknown

controller ip address and port in format "XXX.XXX.XXX.XXX:yyyy"

time and date when the program is sent to the controller
number of milliseconds between request and response
number of bytes transfered between server and controller
number of communication errors encountered by controller
list of available controller variables in XML format
allocation file downloaded from the controller, plain text

To check the format of a specific variable, create request in your browser.

Common configurations

LAN with ip autodetect
controllers and server are in the local network

[ETH]
enabled = true
autodetect_enabled = true

[PUSH]
enabled = false
[CAN]
enabled = false

WAN using push
controllers send push, server has a known ip address

[ETH]
enabled = true
autodetect_enabled = false

[PUSH]
enabled = true
[CAN]
enabled = false

CAN interface
Raspberry Pi, PICAN2 and a single Cybro controller

[ETH]
enabled = false
autodetect_enabled = false

[PUSH]
enabled = false
[CAN]
enabled = true

CAN interface

To use CAN interface, open Raspberry Pi /boot/config.txt and add this to the end of the file:

dtparam=spi=on
dtoverlay=mcp2515-can®,oscillator=16000000, interrupt=25
dtoverlay=spi-bcm2835-overlay

Configure can0 interface:
sudo /sbin/ip link set can® up type can bitrate 100000

sudo ifconfig can@ txqueuelen 1000
sudo ifconfig can@ up

Exit code
When the process is terminated, the following codes are returned:

1: general error, program stopped unexpectedly

2: file not found, can't read the configuration file

5: access denied, can't open A-bus or SCGI port
130: interrupt signal, program terminated with Ctrl-C

MQTT client

The MQTT client acts as a connection between controllers and MQTT system.

* connects Cybro with MQTT system using scgi server

* both publisher and subscriber roles are supported

» configured by editing config.ini file

The client is designed to run as a service, ensuring continuous operation without manual intervention.
Both publisher and subscriber roles are supported, enabling data to flow in both directions. The client
sends Cybro variables to the broker and writes published data back to Cybro.

Client is configured by editing config.ini file. If file is modified while client is running, it will automatically
reload the file and restart.

MQTT client can use encrypted connection. Open config.ini, section MQTT, enable TLS, generate
token and provide a security certificate.

Publisher

The publisher role of MQTT client sends data from Cybro controller to MQTT broker. Select the
variables to be published, MQTT topic and the method of operation.

Read from controller every 10 seconds and publish to MQTT:

[PUBLISHER]
var = c20000.cybro_temperature, myhome/system/temperature, 10

Read from controller every 10 seconds, publish on MQTT when value is changed:

[PUBLISHER]
var = c20000.cybro_temperature, myhome/system/temperature, 10, on-change

Publishing can also be triggered by an event. To do this, set period to zero and configure on-request
socket. When socket is sent, data is pushed to the MQTT client, which then publishes it to MQTT.
Periodic and event-driven publishing can be used together, allowing data to be sent at regular intervals
and immediately when a change occurs.

[PUBLISHER]
var = c20000.event_data, myhome/events, ©

Subscriber

In the subscriber role, the MQTT client receives data from MQTT broker and writes it to the controller.
Multiple controllers can be subscribed to the same topic.

[SUBSCRIBER]
var = c20000.cybro_qx00, myhome/livingroom/output

To check how that works, install Mosquitto MQTT broker and start in verbose mode:
mosquitto -v
Turn the cybro output on and off:

mosquitto _pub -t myhome/livingroom/output -m 1
mosquitto_pub -t myhome/livingroom/output -m @

Data logger

The data logger reads data from controller and writes to database.

» periodically reads cybro variables and writes them to database
* manage alarms and events and writes them to database
« configured by editing the config.ini and data_logger.xml files

The logger uses scgi server for reading and writing to controller. It is designed to run as a service,
ensuring operation without manual intervention. It can be executed on the same or separate computer
from scgi server. When connected over the internet, encryption should be used.

The logger uses MySQL/MariaDB database. If dbase doesn't exist, data logger (v3.2.2 or later) will
automatically create required tables on the first run.

Configuration
The config.ini file contain parameters needed to access scgi server and database.

[SCGI]
server_address = localhost
port = 4000

[DBASE]

host = localhost

port = 3306

name = cybro

user = root

password = root
max_query_size = 100000

The data_logger.xml file defines what will be written to the database.

Variables in <sample> section are periodically read and stored into the measurements table. The
period is defined for each task. Available units are: s (seconds), min (minutes), h (hours) and d (days).

Variables in <event> and <alarm> sections are read periodically, and stored into the alarm table when
condition is satisfied. Events are stateless, while alarms can be active, inactive and acknowledged.

The <class>, <priority> and <message> tags have no function in the program, they are written to the
database so that they can be used for data analysis.

The <list> tag can be used to automatically produce multiple variables. For example, this two groups

<list>
<group>
<name>cybro</name>
<item>c20000</item>
<item>c20001</item>
</group>
<group>
<name>array</name>
<item>[@]</item>
<item>[1]</item>
<item>[2]</item>
</group>
</list>

with this line
<variable>{cybro}.myvar{array}</variable>
will produce the following output:

<variable>c20000.myvar[@]</variable>
<variable>c20000.myvar[1]</variable>
<variable>c20000.myvar[2]</variable>
<variable>c20001.myvar[@]</variable>
<variable>c20001.myvar[1]</variable>
<variable>c20001.myvar[2]</variable>

Alarm type
1. Binary alarm

When the variable is set, it will create a new alarm. To create the next alarm, the variable must return
to zero for at last one minute (sample period).

<task>
<period>1min</period>
<class>system</class>
<message>Alarm requested by controller</message>
<variable>c20001.alarm_request</variable>
<enabled>true</enabled>

</task>

2. High limit alarm

When measured value is higher than hilimit (>28V), it will create a new alarm. To create the next
alarm, variable must fall below hilimit minus hysteresis (28V-2V=26V).

<task>
<period>1min</period>
<class>system</class>
<message>Power supply too high</message>
<variable>c20000.cybro_power_supply</variable>
<hilimit>280</hilimit>
<hysteresis>20</hysteresis>
<enabled>true</enabled>

</task>

3. Low limit alarm

When measured value is lower than lolimit (<18V), it will create a new alarm. To create the next alarm,
variable must rise above lolimit plus hysteresis (18V+2V=20V).

<task>
<period>1min</period>
<class>system</class>
<message>Power supply too low</message>
<variable>c20000.cybro_power_supply</variable>
<lolimit>180</lolimit>
<hysteresis>20</hysteresis>
<enabled>true</enabled>

</task>

4. Out of range alarm

When measured value is outside of 18..28V range, a new alarm is triggered. To inactivate the alarm,
variable must return within the 20..26V range.

<task>
<period>1min</period>
<class>system</class>
<message>Power supply out of range</message>
<variable>c20000.cybro_power_ supply</variable>
<hilimit>280</hilimit>
<lolimit>180</lolimit>
<hysteresis>20</hysteresis>
<enabled>true</enabled>

</task>

Installation

These instructions apply exclusively to data logger. When used in conjunction with web scada,
database must be created and managed using Django commands.

Install database (Linux)

sudo apt update
sudo apt install mariadb-server -y

Install database (Windows)

Download the latest stable version from mariadb.org. Make sure the executable is included in PATH
environment variable.

Configure database (Linux and Windows)
Log into database shell:
mysql -u <user> -p
Enter password and create a new database:
CREATE DATABASE cybro;
USE cybro;
SOURCE db_create.sql

Create user and grant privileges to the database:

CREATE USER '<user>'@'localhost’' IDENTIFIED BY '<password>';
GRANT ALL PRIVILEGES ON cybro.* TO '<user>'@'localhost';

When finished, enter chosen user and password to the config.ini file.

http://mariadb.org/

Web scada

Web-based interface for Cybro controllers that features:

* real-time monitoring

* timeplots and tables

* energy Yyield report

* pages built in HTML

* custom tags for dynamic content
* data export option

Operation parameters &
B m section number (0-no sections, 1-A, 2-B) 'Y ‘\ —

S0 inverter nominal power [kW \ J
D power (kW] - 7
B nominal range of PV reference cell [W/m2]

SN total surface of photovoltaic panels [m2]

glels)

1260

Web scada is a content management system (CMS) that manages users, controllers, pages, and
plants (projects). Static content is created with HTML, dynamic content is created with custom tags.

User account and permissions are created by the administrator:

home page...................... enable user to view their private plants

plant administrator allow user to change the content of their pages

A administrator.............. complete control of users, pages and plants

S site manager.............. add/edit/delete static pages

U user manager add/edit/delete user accounts

C controller manager..... add/edit/delete controllers

T template manager...... add/edit/delete templates

M media manager.......... add/delete media files (images, video, documents)

P plant manager............ add/edit/delete plants (must be plant administrator)

W write permission......... edit cybro settings, acknowledge alarms (must be plant administrator)

Create a new project

1. plants, create a new plant
2. plant properties, add administrator
3. add controllers

Add controller to the project

1. configure cybro push, check acknowledge
2. open server status, check push list

3. controllers, add cybro to the list, set owner
4. plants, edit properties, add plant controller

Add pages to the project

1. create a template for each section
2. insert search/replace pair for plant-specific data

Web scada supports time zones. Timestamps (samples, events, alarms) are stored as UTC. When
timestamp is displayed, time difference is calculated. Server log is recorded in server time.

Installation
Create a new database:

python manage.py migrate
mysql -u user db -p < db_initial data.sql

Upgrade an existing database (created with manage.py):
python manage.py migrate
Upgrade an existing database (not created with manage.py):

mysql -u user db -p < db_upgrade v1111 to v120.sql
mysql -u user db -p < db_upgrade_v114 to_v115.sql

After completing these steps, subsequent upgrades should be performed as if the database is created
with manage.py.

This is recommended Django method for creating and migrating database. Any other approach may
trigger warnings during startup and cause conflicts during upgrades.

Setup e-mail reports

E-mail reporting system provides scheduled updates, delivering summaries and critical data directly to
users' inboxes. It can generate daily performance metrics, system alerts, usage statistics, ensuring
users stay informed without the need to log in to the platform.

1. Open /app/web_scada/settings/settings_local.py, fill SMTP and EMAIL fields.

2. Edit user, email, save. Test. If not received, check SMTP log.

3. Add plant to user home page, subscribe to alarms and events.

4. Add crontab entries to run the reporting engine once an hour:

crontab @ * * * * Jusr/bin/.../app/web_scada/project/run_create_reports.py
crontab @ * * * * /usr/bin/.../app/web_scada/project/run_send_reports.py

Use full path. Make sure both python files are set as executable and user rights are set accordingly.
Run a test server
The Django test server allows local testing of your application without installing the Apache server.

cd /app/web_scada/
python manage.py runserver localhost:8080

It is recommended to use test server in virtual environment.

Collect static files

The collectstatic command gathers static files from specified directories and copies them to the central
directory defined by STATIC_ROOT. Django development server use static data without collecting. In

production, it's recommended to use Apache or NGINX web server to serve static files efficiently.

cd /app/web_scada/
python manage.py collectstatic

Files will be bundled into /app/web_scada/staticroot directory, used by the Apache to serve static files.

More installation instructions and scripts in /app/web_scada/doc/ directory.

Object reference

decimal

Temperature: 24.7 °C

Decimal number, displayed in current text style using HTML element.

* var (cybro tag to read value from, e.g. c20000.cybro_temperature)

» decimals (number of digits after decimal point, default is 0)

« groupdigits (use comma to separate digits in groups by three: 12,345,678.99, default is 0)
« zeroblanking (0-show leading zeros, 1-clear leading zeros, default is 1)

« digits (field width in digits, meaningful when zeroblanking is 0, default is 4)

<cybro>
<type>decimal</type>
<var>c20000.cybro_temperature</var>
<decimals>1</decimals>
<groupdigits>1</groupdigits>
<zeroblanking>1</zeroblanking>
<digits>4</digits>

</cybro>

Value is displayed with a specified number of decimal places. For real variables this is straightforward,
while for integer variables decimal point is shifted by the specified number of places.

textlist
Setpoint: High
Displays a string for each value. The tipping point is in the middle of the given values.

If action is enabled, it can set a value on click. If a single value is given, the action is write, otherwise it
toggles between given values.

* var (cybro tag to read value, e.g. c20000.setpoint)

* text (texts to replace on values, alternate is <texts>Off,Low,High</texts>)

« value (specific values for texts, alternate is <values>0,50,100</values>, default is 0,1,2...)
« action (0-display only, 1-action enabled, default is 0)

<cybro>
<type>textlist</type>
<var>c20000.setpoint</var>
<text>Off</text>
<text>Low</text>
<text>High</text>
<value>0</value>
<value>l</value>
<value>2</value>
<action»>@</action>

</cybro>

bitlist

=
RF signal: °

Displays an image for each value. Breakpoint is halfway between the values.

If action is enabled, it can set a value on click. If a single value is given, the action is write, otherwise it
toggles between values.

« var (cybro tag to read value, e.g. c20000.selection)

« file (image files to show on values, alternate is <files>test0.png,test1.png,test2.png</files>)

« value (specific values for bitmaps, alternate is <values>0,50,100</values>, default is 0,1,2...)
« action (0-display only, 1-action enabled, default is 0)

<cybro>
<type>bitlist</type>
<var>c20000.rf_signal</var>
<file>signal_©.png</file>
<file>signal_1.png</file>
<file>signal 2.png</file>
<file>signal 3.png</file>
<value>0</value>
<value>1</value>
<value>2</value>
<value>3</value>
<action>@</action>

</cybro>

bargraph
I |

Horizontal or vertical bar, graphically representing the value.

« var (cybro tag to read value from, e.g. c20000.cybro_temperature)
* barstyle (horizontal or vertical, default is horizontal)

* min (minimum value, default is 0)

* max (maximum value, default is 100)

* size (graph width/height in pixels, default is 100)

« thickness (graph height/width in pixels, default is 10)

« color (#rrggbb, bar color in hexadecimal RGB notation)

* bgcolor (#rrggbb, background color in hexadecimal RGB notation)

<cybro>
<type>bargraph</type>
<var>c20000.line_voltage</var>
<barstyle>horizontal</barstyle>
<min>0</min>
<max>400</max>
<size>250</size>
<thickness>24</thickness>
<color>#3A92C4</color>
<bgcolor>#COCOCO</bgcolor>
</cybro>

Numeric field with toggle button. It can operate as binary (0/1), or cycle through a predefined set of
values (0/25/50/75/100).

« var (cybro variable, e.g. c20000.setpoint)
* max (maximum value, default is 1)
« value (predefined set of values, alternate is <values>0,50,100</values>, default is 0,1,2...)

« digits (field width in digits, default is 4)
« color (#rrggbb, background color in hexadecimal RGB notation)

<cybro>
<type>toggle</type>
<var>c20000.power_loss</var>
<digits>4</digits>

</cybro>

incdec

. acceptable current

Numeric field with +/- buttons.

« var (cybro tag to read and write value, e.g. c20000.setpoint)

* min (minimum value, default is 0)

* max (maximum value, default is 9999)

« step (increment/decrement value, default is 1)

» decimals (number of digits after decimal point, default is 0)

« digits (field width in digits, default is 4)

« color (#rrggbb, background color in hexadecimal RGB notation)

<cybro>
<type>incdec</type>
<var>c20000.current_limit</var>
<min>0</min>
<max>250</max>
<step>0.5</step>
<decimals>1</decimals>

</cybro>

submit

[0] [] write magic

Field for display value, field for entering value, submit button.

« var (cybro tag to read and write value, e.g. c20000.setpoint)

* min (minimum accepted value, default is 0)

* max (maximum accepted value, default is 9999)

» decimals (number of digits after decimal point, default is 0)

« digits (field width in digits, default is 4)

« color (#rrggbb, background color in hexadecimal RGB notation)

<cybro>
<type>submit</type>
<var>c20000.write_magic</var>
<min>@</min>
<max>9999</max>
<decimals>1</decimals>
</cybro>

timeplot

(& YY)) [V)2Y) B8 B8

Bl c22665.plant_dc_power = 0.0
Il c22665.plant_ac_power = 0.0

00 01 02 03 04 05 06 O7 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00

Shows historical data from database, as connected line or series of bars. Supports multiple tags.

Timeplot can display multiple tags. If more than one tag needs to be displayed, <var> should contain
name list separated by comma, and <color> should contain list of colors separated by comma. If not
defined, default colors are used for each tag.

Available colors: aqua, azure, beige, black, blue, brown, cyan, darkblue, darkcyan, darkgrey,
darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon,
darkviolet, fuchsia, gold, green, indigo, khaki, lightblue, lightcyan, lightgreen, lightgrey, lightpink,
lightyellow, lime, magenta, maroon, navy, olive, orange, pink, purple, violet, red, silver, white, yellow.

* var (cybro variables to plot, comma separated)
« graphstyle (line|bars, default is line)

* span (15min|hour|day|month|year, default time unit)

 spancount (default graph width in time units)

* spanmin (15min|hour|day|month|year, lower limit of the user's selection range)

* spanmax (15min|hour|day|month|year, upper limit of the user's selection range)

» cumulative (graphstyle=bars, each bar shows difference to the previous one)

« resolution (number of columns per unit, default is hour 6, day 24, month 31, year 12)

« datetime (yyyy-mm-dd hh:00, default time, "now" if empty)
« timeskip (specifies weather the time skip bottuns are visible)
» download (specifies whether the download button is visible or not, default is 1)

* min (minimum y value or auto for autoscaling, default is 0)
* max (maximum y value or auto for autoscaling, default is auto)
» decimals (number of digits after decimal point, default is 0)

« color (#rrggbb, line color in hexadecimal RGB notation or one of the predefined colors)
» width (timeplot width in pixels, default is 750)
* height (timeplot height in pixels, without buttons, default is 250)

» showlegend (if true the legend is shown, anything else it is not, default is true)
* legendlabel (comma separated list of labels for tags in the legend)
* legendunit (a suffix for all labels in the legend)

<cybro>
<type>timeplot</type>
<var>c20000.voltage</var>
<graphstyle>line</graphstyle>

hour
<spancount>1</spancount>

<spanmin>hour</spanmin>
<spanmax>day</spanmax>

<datetime></datetime>

<timeskip>1<timeskip>
<download>1</download>

<min>0</min>
<max>auto</max>
<decimals>0</decimals>

<cumulative>@</cumulative>
<resolution></resolution>

<color>#EDC240</color>
<width>750</width>
<height>250</height>

<showlegend>true</showlegend>

<legendlabel>Power</legendlabel>

<legendunit>kW</legendunit>
</cybro>

alarm_list
Event or alarm list for the specified controller or the whole plant.

« controller (cybro name, empty for whole plant, default is empty)
« filter (all/alarms/events, default is all)
* items (item count per page, default is 10)

<cybro>
<type>alarm_list</type>
<controller>c20000</controller>
<filter>alarms</filter>
<items>25</items>

</cybro>

template

Container for a piece of HTML code that can be reused multiple times. Before being sent to the
browser, the template is processed by a series of search/replace operations. This allows the same
template to be used on various pages displaying different content.

* name: template name
* search: text to be replaced
* replace: text to replace with

<template>
<name>string header</name>

<search>xxx-project-name-xxx</search>
<replace>Primel plant</replace>

<search>cXXXX</search>
<replace>c20000</replace>
</template>

Troubleshooting
SCGI server not running

1. Ensure that the SCGI port (TCP 4000) is available.
2. Ensure that the A-bus port (UDP 8442) is available.
3. Check log file for error messages.

Apache started, no pages displayed

1. Verify Django version

2. Check /app/web_scada/settings/settings_local.py

3. Ensure that wsgi add-on is installed and properly configured in httpd.conf

4. Check that MySQL is running and the database is created, with all tables and fields

Cybro controller does not respond

1. Verify that cybro is running

2. Manually set push_req and check for the acknowledge

3. Ensure the push address and port are entered correctly
4. Ping the destination server to confirm its availability

5. Try using the server's ip address instead of domain name
6. Check that the server is not being blocked by a firewall

Cybro returns error code 2 (variable not found)

1. Ensure the program contains the variable you are trying to read

2. Check that cybro has valid IP address and correct network settings

3. Check that alc table is sent to cybro (CyPro/Configuration/General/Send allocation table to PLC)
4. Check that config.ini option only_user_variables is false

	Overview
	Installation
	Non-stop operation
	Virtual environment

	SCGI server
	Reading and writing
	Event-driven data
	Encrypted connection
	Controller alias
	Data cache
	System variables
	Common configurations
	CAN interface
	Exit code

	MQTT client
	Publisher
	Subscriber

	Data logger
	Configuration
	Alarm type
	Installation

	Web scada
	Installation
	Object reference
	Troubleshooting

